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ABSTRACT

Efficient moving object tracking in cases of partial occlu-
sion is a challenging task for the researchers in the fields
of computer vision and video processing. In modern coding
standards, like MPEG-4 and MPEG-7, the term of video ob-
jects is used to define moving objects in a video sequence.
Automatic extraction of such objects is by no means triv-
ial, and occlusion is one of most important problems. This
paper reformulates one of the most popular deformable tem-
plates for shape modeling and object tracking, the Snakes,
in a probabilistic manner, in order to include providence
for partial occlusion of the moving objects. Experiments
of object tracking in partial occlusion, in complex natural
sequences, where temporal clutter, abrupt motion and ex-
ternal lighting changes have been carried out, showing the
efficiency of the proposed approach.

1. INTRODUCTION

The deformable templates known as active contours have
come up and drawn special attention in the last decade, due
to their efficiency in dealing with problems like image and
motion segmentation [7], object detection, localization and
tracking in video sequences [8, 10]. A major category of ac-
tive contours, the Snakes, has been successfully applied to
a variety of problems, such as edge detection and tracking
[3]. Snakes are based on energy minimization along a curve;
that is a curve deforms its shape so as to minimize an “in-
ternal” and an “external” energy along its boundary. How-
ever, Snakes are not problem free models: parameter tuning,
shape initialization and the complexity of the energy mini-
mization procedure are problems related to the applicability
of Snakes, while the relatively poor performance in images
and video sequences with complex and noisy background is
mainly due to the fact that Snakes are one of the most rep-
resentative examples of boundary-based active contours.
Object tracking in partial occlusion is a problem which seems
to have similarities with object tracking in complex back-

ground, but it is actually much harder. Partial occlusion
hides some parts of the object and in this case the external
(image dependent) energy term, which contributes to the to-
tal snake energy, has to be ignored. The basic issue here is to
understand when partial occlusion occurs. In our approach
the movement history of the snake is used a predictor of its
position in the next frame. Prediction serves two purposes:
(a) it provides a reasonable shape initialization and (b) it can
be used for detecting partial occlusion.
The probabilistic approach of tracking contours that we use,
utilizes a snake model, which is based on both boundary
and region information. Region motion information about
the past and the present motion of the tracked object is pro-
vided by a motion estimation scheme [1] and, based on the
object’s motion history, a shape prior knowledge (boundary-
based), indicated asuncertainty region, is extracted. The
moving contour is estimated inside that region, according to
an energy function. A force-based implementation, follow-
ing a steepest descent-alike method is used to approximate
the global minimum solution of the snake energy function.
Furthermore, the obtained solution should obey several con-
straints in order to identify the boundaries of occluded parts
of the moving objects.

2. THEORETICAL BACKGROUND

Active contour models were first introduced by Kass et al.
[5] through the so-called snake models. In general, snakes
concern model and image data analysis, through the defini-
tion of a linear energy function and a set of regularization
parameters. This energy function consists of two parts, the
external energy termEext, which depends on the image data
according to a chosen criterion and the internal energy term
Eint, which enforces smoothness along the snake. The goal
is to minimize the total snake energy and this is achieved it-
eratively, after considering an initial estimate for the object
shape.
The proposed total energyEsnake of the snakeCsnake, is



given by Esnake = Eint + Eext, whereEint is defined
in terms of snake local curvatureCUsnake and elasticity
DVsnake, whereasEext is defined with the use of a modified
image gradientGm, replacing the commonly used laplacian-
of-gaussian term|∇Gσ∗I|, which introduces noise in the
snake models. More information about the definitions of
the proposed energy terms can be found in [9].
Before applying the tracking model in the current frame of
a sequence, as described in the following section, we pre-
process the image to eliminate noise, with the use of a mor-
phological Alternating Sequential Filter (ASF), based on
successive morphological area opening and closing opera-
tions with structure elements of increasing scale and differ-
ent orientations [6]. The main advantage of such filters is
that they preserve line-type image structures (edges), which
is impossible to be achieved, for example, with median fil-
tering. The modified image gradientGm used for our pur-
poses is actually a part of the Watershed transformation in
image segmentation problems [6] and consists of the ex-
traction of binary image markers, through a morphologi-
cal geodesic erosion reconstruction of the image gradient,
and successive morphological conditional erosions of these
markers, so that they constitute the only local minima of the
image gradient.

2.1. Motion Estimates Extraction

The correct extraction of moving edges in terms of position
and direction is important and aids the accurate estimation
of an object’s position from the current to the next frame.
Several existing techniques are able to adequately cope with
the difficult problem of optical flow recovery given that their
assumptions hold. The challenge is to achieve high robust-
ness against strong assumption violations commonly met in
real sequences. We adopt the motion estimation technique
proposed by Black et al. [1] as an efficient tool for over-
coming these violations. They reformulate the objective
function, which consists of the optical flow equation and the
spatial coherence constraint, in order to include the robust
statistics tools [4] in an almost straightforward way. They
simply take the standard least-squares formulation of opti-
cal flow and use a robust estimator instead of the quadratic
one. This approximation is then minimized using a coarse-
to-fine (multiresolution) simultaneous over-relaxation tech-
nique. The proposed reformulation results in an area-based
regression technique that is robust to multiple motions due
to occlusion, transparency or specular reflections and com-
pensates for over-smoothing and noise sensitivity.

3. OBJECT TRACKING

The main issues that the proposed tracking approach is called
upon to cope with, are: (a) non-rigid (deformable) moving

objects, (b)moving objects with a complicated (not smooth)
contour, (c) object movements which are not simple trans-
lations, but also include rotations and motion towards the
camera capturing the sequence, (d) sequences with strong
existence of temporal clutter and external lighting changes,
(e) sequences with complex background (common case in
natural sequences), and (f) moving object partial occlusions.
The issues (a)-(d) are covered by the formulation of proba-
bilistic approach of snakes as it is shown in [9]. The issues
(e) and (f) are the subjects of the current work and are dis-
cussed in the following sections.

3.1. Force-Based Approach

Given the proposed snake model presented in Section 2, the
first step is to extract some regions around the curve, which
are described asuncertainty regions. This is achieved by
exploiting the motion history of the tracked contour (curve
points’ motion in previous time instances), estimated with
the use of the motion estimation scheme proposed in sub-
section 2.1: the previously estimated contour is deformed
according to the previously estimated point motion and the
standard deviation of each point’s mean motion is calcu-
lated; the uncertainty region around each point is then de-
fined in terms of its corresponding standard deviation. The
next step is to find the new position of each point of the
curve, inside its corresponding uncertainty region, which
corresponds to the minimum of a criterion, which is defined
by the snake’s energy terms described Section 2:

C(I+1) = arg min
r∈R

[w1 ·D(r)
CU +w2 ·D(r)

DV +w3 ·E(r)
ext], (1)

whereD
(r)
CU andD

(r)
DV are the differences between the cur-

vatures and elasticities of the contourC(I) and the curve
r ∈ R at thek-th point, respectively. The set of all possible
curvesR emerge by oscillating the points of the curve in-
side the uncertainty regionU. Finally, the weightsw1 and
w2 are computed according to the curvatureCUsnake and
elasticityDVsnake distributions’ zero crossings, that denote
how smooth and elastic the curve is, whilew3 is computed
in terms of the mean value ofGm inside the uncertainty re-
gionU, that denote how smooth (homogeneous) this region
is.
The minimization of the equation (1) is a procedure of high
complexity. This is a common problem when applying the
minimization procedure of snakes and therefore we adopt a
force-based approach, as described in the following, instead
of using a dynamic programming algorithm. According to
that approach, energy terms are converted in forces resulting
to the minimizing of them. The initial estimation of the ob-
ject’s contourC(I+1)

init = [C(I+1)
init,k |k = 1 . . . N ] in the frame

I + 1 is computed based on contour’s current location and



its instant motion, i.e.,

C(I+1)
init = C(I) + m(I)

c , (2)

wherem(I)
c = [m(I)

(c,1), ...,m
(I)
(c,N)] is the estimated motion

of the contour points in the frameI (obtained using the tech-
nique described in 2.1). Then, the internal snake forces are
defined as,Fc(k) = w1(k) · [CU(C(I))(k)−CU

(C(I+1)
init )

(k)] ·

n(I+1)
k andFd(k) = w2(k)·[DV(C(I))(k)−DV

(C(I+1)
init )

(k)]·

t(I+1)
k , wheret(I+1)

k andn(I+1)
k are the tangential unit and

normal vectors of the curveC(I+1)
init at each pointk, respec-

tively. The forcesFd(k) represent the stretching compo-
nents (elasticity), whereasFc(k) are the deformations of
the curve along its normal directions (local curvature).
Given the snake’s uncertainty regionU, for each pointk
we define a functiongm,k(p), constituting of all pixelsp
of Gm, inside the uncertainty regionU, lying on the line
segment that is defined by the normal direction of the curve
C(I+1)

init at pointk:

gm,k(p) = [Gm(p)|(C(I+1)
init,k−p)n(I+1)

k = 1, p ∈ U] (3)

p̃k = arg max
p

[gm,k(p)] , (4)

p̃k determines the most salient edge-pixel in the line seg-
ment defined above and thus defines the direction of the ex-
ternal snake force

Fe(k) = w3(k) · sgnk · eext(k) · n(I+1)
k , (5)

wherew3(k) = ‖k − p̃k‖, k is the pixel corresponding to
the contour pointk, andsgnk denotes the direction of the
force: sgn = ‘ + ‘ if p̃ is inside the curve, andsgn =
‘ − ‘ otherwise. From the definition of the external en-
ergy term it can be seen that it takes values close to zero
in regions of high image gradient (G2

m(k) ' 1) and values
close to unity in regions with relatively constant intensity
(smooth)(G2

m(k) ' 0).
In the force-based approach, the initialization of the exam-
ined curveC(I+I)

init marches towards the object’s boundaries
in the next frameI + 1, according to the forces applied to
it. Thus, the minimization of equation (1) can be approx-
imated by using the internal and external snake forces de-
fined above, in an iterative manner similar to the steepest
descent approach [2]. The final contourC(I+1) is obtained
when one of the following criteria is satisfied: (a) if the re-
sultant force is greater then the one of the next iteration, or
(b) the maximum number of iterations is reached. It must
be noted that the use of the proposed steepest descent ap-
proach does not ensure that the final contour corresponds to
the solution of the equation (1), but under the constraints we
pose, even ifC(I+1) corresponds to a local minimum, it is
close to the desired solution (global minimum).

3.2. Rule-driven Handling of Partial Occlusion

In order to separate background and object regions, espe-
cially when the background in not homogeneous (smooth),
as well as to cope with moving object’s partial occlusion
that may occur, we introduce more constraints thatp̃k (eq.
(4)) must obey, so that its estimation will be reasonable.
Without loss of generality, we suppose that the background
is static and possible occluding objects are also static. Let
m̄

(I)
c = 1

N

∑N
i=1 m

(I)
c,i be the mean estimated motion of

the contour points at frameI andk− 1 andk + 1 be the
surrounding pixels of pointk on the line segment, along
which the functiongm,k is calculated, then (a)̃pk must di-
vide that line segment in two parts: an immiscibly moving
and a immiscibly static one, that isu(k− 1) ' m̄

(I)
c and

u(k + 1) ' 0, or u(k− 1) ' 0 andu(k + 1) ' m̄
(I)
c , and

(b) p̃k must be a moving point with velocity close tōm(I)
c ,

whereu(·) denotes the instant velocity.
Thus, taking the above constraints into consideration, we
overcome cases such as (a) when the maximum is found in
background: it is not a moving one and does not separate
two immiscible (according to the motion) parts of the func-
tion gm, (b) when the maximum is found inside the moving
object region: although it is a moving one, it does not divide
the functiongm in such two parts, (c) when occlusion oc-
curs and the maximum is on the occluding object boundary:
the maximum is not moving, although it makes the region
gm separation and (d) when occlusion occurs and the max-
imum is in the occluding object region: neither the maxi-
mum is moving, nor it makes such a separation. In these
cases, where these two constraints are not reached, we ig-
nore the external force and evolve the curve according to its
internal forces; in this way, we can obtain contours similar
to the ones in the past frames.

4. EXPERIMENTAL RESULTS

In Figure 1, the proposed approach is applied to a strongly
cluttered sequence, where the desired object is deforming
along the time; the accuracy of the method is based on the
snake’s external energy definition through the image mod-
ified gradient utilization and the ASF pre-filtering. On the
other hand, Figure 2 represents an indoor human head track-
ing: despite the complicated background, the rule-based
constraints proposed in subsection 3.2 separate correctly the
moving head from background. Finally, Figure 3 illustrates
a case of two moving objects, where, as time goes by, the
one is getting partially occluded by a static obstacle, while
the other is moving in the front of the obstacle. In sub-
figures 3 (a1-d1), the motion estimates are illustrated, show-
ing that the noise is effectively eliminated on the boundaries
between the static and moving regions even when the oc-
clusion occurs, whereas the respective sub-figures 3 (a2-d2)



(a) (b)

(c) (d)

Fig. 1. Example of a man walking in a cluttered sequence.

(a) (b)

(c) (d)

Fig. 2. Head tracking in with complicated background.

show that both objects’ contours are estimated with suffi-
cient accuracy, due to the additional constraints in which
the maximum of equation (4) is imposed.

5. CONCLUSIONS

In this work we have presented a rule-driven application of
Snakes for object tracking in partial occlusion and complex
backgrounds. Rules represent constraints on the continuity
of the contour motion in successive frames as well as differ-
ences in the mean motion of the object and the background
or the occluding object. Obtained results are encouraging,
while the authors are working so as to include mathematical
representation of the rules into the snake’s energy minimiza-
tion function.
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